Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biochemistry ; 58(16): 2125-2132, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30912640

RESUMO

Cyanobactin heterocyclases share the same catalytic domain (YcaO) as heterocyclases/cyclodehydratases from other ribosomal peptide (RiPPs) biosynthetic pathways. These enzymes process multiple residues (Cys/Thr/Ser) within the same substrate. The processing of cysteine residues proceeds with a known order. We show the order of reaction for threonines is different and depends in part on a leader peptide within the substrate. In contrast to other YcaO domains, which have been reported to exclusively break down ATP into ADP and inorganic phosphate, cyanobactin heterocyclases have been observed to produce AMP and inorganic pyrophosphate during catalysis. We dissect the nucleotide profiles associated with heterocyclization and propose a unifying mechanism, where the γ-phosphate of ATP is transferred in a kinase mechanism to the substrate to yield a phosphorylated intermediate common to all YcaO domains. In cyanobactin heterocyclases, this phosphorylated intermediate, in a proportion of turnovers, reacts with ADP to yield AMP and pyrophosphate.


Assuntos
Adenilil Ciclases/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeos Cíclicos/metabolismo , Prochloron/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Ciclização , Cisteína/química , Cisteína/metabolismo , Difosfatos/metabolismo , Modelos Químicos , Estrutura Molecular , Peptídeos Cíclicos/química , Prochloron/fisiologia , Treonina/química , Treonina/metabolismo , Urocordados/microbiologia
2.
Appl Environ Microbiol ; 82(12): 3450-60, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27037119

RESUMO

UNLABELLED: Diversity-generating metabolism leads to the evolution of many different chemicals in living organisms. Here, by examining a marine symbiosis, we provide a precise evolutionary model of how nature generates a family of novel chemicals, the cyanobactins. We show that tunicates and their symbiotic Prochloron cyanobacteria share congruent phylogenies, indicating that Prochloron phylogeny is related to host phylogeny and not to external habitat or geography. We observe that Prochloron exchanges discrete functional genetic modules for cyanobactin secondary metabolite biosynthesis in an otherwise conserved genetic background. The module exchange leads to gain or loss of discrete chemical functional groups. Because the underlying enzymes exhibit broad substrate tolerance, discrete exchange of substrates and enzymes between Prochloron strains leads to the rapid generation of chemical novelty. These results have implications in choosing biochemical pathways and enzymes for engineered or combinatorial biosynthesis. IMPORTANCE: While most biosynthetic pathways lead to one or a few products, a subset of pathways are diversity generating and are capable of producing thousands to millions of derivatives. This property is highly useful in biotechnology since it enables biochemical or synthetic biological methods to create desired chemicals. A fundamental question has been how nature itself creates this chemical diversity. Here, by examining the symbiosis between coral reef animals and bacteria, we describe the genetic basis of chemical variation with unprecedented precision. New compounds from the cyanobactin family are created by either varying the substrate or importing needed enzymatic functions from other organisms or via both mechanisms. This natural process matches successful laboratory strategies to engineer the biosynthesis of new chemicals and teaches a new strategy to direct biosynthesis.


Assuntos
Produtos Biológicos/metabolismo , Prochloron/fisiologia , Simbiose , Urocordados/microbiologia , Animais , Redes e Vias Metabólicas , Prochloron/metabolismo , Metabolismo Secundário
3.
Proc Natl Acad Sci U S A ; 109(50): 20655-60, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23185008

RESUMO

Secondary metabolites are ubiquitous in bacteria, but by definition, they are thought to be nonessential. Highly toxic secondary metabolites such as patellazoles have been isolated from marine tunicates, where their exceptional potency and abundance implies a role in chemical defense, but their biological source is unknown. Here, we describe the association of the tunicate Lissoclinum patella with a symbiotic α-proteobacterium, Candidatus Endolissoclinum faulkneri, and present chemical and biological evidence that the bacterium synthesizes patellazoles. We sequenced and assembled the complete Ca. E. faulkneri genome, directly from metagenomic DNA obtained from the tunicate, where it accounted for 0.6% of sequence data. We show that the large patellazoles biosynthetic pathway is maintained, whereas the remainder of the genome is undergoing extensive streamlining to eliminate unneeded genes. The preservation of this pathway in streamlined bacteria demonstrates that secondary metabolism is an essential component of the symbiotic interaction.


Assuntos
Recifes de Corais , Prochloron/genética , Rhodospirillaceae/genética , Urocordados/microbiologia , Sequência de Aminoácidos , Animais , Azóis/química , Azóis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Metagenoma , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Prochloron/fisiologia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rhodospirillaceae/fisiologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Simbiose/genética , Simbiose/fisiologia , Urocordados/fisiologia
4.
ISME J ; 6(6): 1222-37, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22134643

RESUMO

We assessed the microbial diversity and microenvironmental niche characteristics in the didemnid ascidian Lissoclinum patella using 16S rRNA gene sequencing, microsensor and imaging techniques. L. patella harbors three distinct microbial communities spatially separated by few millimeters of tunic tissue: (i) a biofilm on its upper surface exposed to high irradiance and O(2) levels, (ii) a cloacal cavity dominated by the prochlorophyte Prochloron spp. characterized by strong depletion of visible light and a dynamic chemical microenvironment ranging from hyperoxia in light to anoxia in darkness and (iii) a biofilm covering the underside of the animal, where light is depleted of visible wavelengths and enriched in near-infrared radiation (NIR). Variable chlorophyll fluorescence imaging demonstrated photosynthetic activity, and hyperspectral imaging revealed a diversity of photopigments in all microhabitats. Amplicon sequencing revealed the dominance of cyanobacteria in all three layers. Sequences representing the chlorophyll d containing cyanobacterium Acaryochloris marina and anoxygenic phototrophs were abundant on the underside of the ascidian in shallow waters but declined in deeper waters. This depth dependency was supported by a negative correlation between A. marina abundance and collection depth, explained by the increased attenuation of NIR as a function of water depth. The combination of microenvironmental analysis and fine-scale sampling techniques used in this investigation gives valuable first insights into the distribution, abundance and diversity of bacterial communities associated with tropical ascidians. In particular, we show that microenvironments and microbial diversity can vary significantly over scales of a few millimeters in such habitats; which is information easily lost by bulk sampling.


Assuntos
Biofilmes , Cianobactérias/fisiologia , Prochloron/fisiologia , Urocordados/microbiologia , Animais , Sequência de Bases , Carbono/metabolismo , Clorofila/análise , Análise por Conglomerados , Cianobactérias/genética , Ecossistema , Luz , Imagem Óptica , Oxigênio/metabolismo , Fotossíntese , Análise de Componente Principal , Prochloron/genética , RNA Ribossômico 16S/genética
5.
Zoolog Sci ; 27(2): 124-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20235396

RESUMO

Lissoclinum punctatum is a colonial ascidian that harbors the symbiotic prokaryotic alga Prochloron in its tunic and in the peribranchial and common cloacal cavities. Most symbiotic cells in the tunic are intracellular (tunic phycocytes), while those in the cavities are extracellular. We found that neither gametes nor embryos brooded in the tunic were associated with photosymbionts. We determined that algal cells attach to posterior parts of the trunk of hatching larvae swimming in the common cloacal cavity. No symbiont cells were found intracellularly in larval tissues. Thus, extracellular Prochloron cells in the cloacal cavities were transferred to the larvae, but intracellular photosymbionts in the tunic were not. The intracellular symbiosis must be reestablished in each generation after larval settlement.


Assuntos
Prochloron/fisiologia , Simbiose , Urocordados/fisiologia , Animais , Larva/fisiologia , Larva/ultraestrutura , Urocordados/ultraestrutura
6.
Zoolog Sci ; 25(12): 1205-11, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19267647

RESUMO

Lissoclinum timorense is a colonial ascidian that harbors the prokaryotic alga Prochloron . The algal photosymbionts adhere to the lamellae of the tunic on the posterior half of the trunk of larvae, which aggregate in the common cloacal cavity of the mother colony. Bead-adhesion tests demonstrated that the lamellae are adhesive, whereas the anterior half of the larval trunk is not. The anterior half is covered with a thin layer of outer tunic, which probably prevents Prochloron cells from attaching and interfering with sensory receptors and adhesive organs. The larval structures and the mode of algal transmission between generations are very similar to those of the Prochloron -harboring ascidian Didemnum molle . Molecular phylogenetic analyses have suggested that photosymbiosis was independently established in each genus, and thus the apparent similarity in the larvae probably resulted from convergence. The distribution pattern of photosymbionts is probably more determinative of algal transmission than phylogenetic constraints.


Assuntos
Larva/microbiologia , Metamorfose Biológica , Prochloron/fisiologia , Simbiose , Urocordados/microbiologia , Animais , Aderência Bacteriana , Fotobiologia , Prochloron/crescimento & desenvolvimento , Urocordados/ultraestrutura
7.
Zoolog Sci ; 23(8): 669-74, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16971784

RESUMO

Morphological processes in the vertical transmission of photosymbionts were investigated in the Prochloron-bearing ascidian Didemnum molle. Prochloron cells were found exclusively in the common cloacal cavity of the colony, attached mainly to the tunic lining of the cavity wall. Oocytes were found in the abdominal region of each zooid, but no Prochloron cells were associated with this stage. During embryogenesis, embryos moved into the tunic core of the colony and were always separated from Prochloron cells in the cloacal cavity by the tunic matrix, until they hatched out from the tunic core. In swimming larvae, Prochloron cells covered the surface of the posterior half of the larval trunk, whereas a thin larval tunic layer covered the anterior half, where no Prochloron cells were found. The tunic of the posterior half of the larval trunk had many folds that enfolded the Prochloron cells and may be adhesive in order to acquire Prochloron cells from the mother colony. The thin larval tunic layer is probably not adhesive and protects the anterior half of the trunk from interference by Prochloron cells with sensory receptors and adhesive organs.


Assuntos
Metamorfose Biológica , Prochloron/fisiologia , Simbiose , Urocordados/microbiologia , Animais , Aderência Bacteriana , Larva/microbiologia , Fotobiologia , Prochloron/crescimento & desenvolvimento , Urocordados/ultraestrutura
8.
Zoolog Sci ; 23(1): 57-63, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16547406

RESUMO

Didemnum molle is a colonial ascidian that harbors the prokaryotic photosymbiont Prochloron in its cloacal cavity. Colonies occur over a relatively wide bathymetric range (approximately 0-30 m), and colony color is widely variable, partly depending on depth. Colonies in shallow sites are bright white, with densely distributed spicules, and often with brown or dark gray pigmentation, while colonies in deeper sites are less pigmented, with sparsely distributed spicules. Didemnum molle colonies contain mycosporine-like amino acids (MAAs) as UV-absorbing substances. These include mycosporine-glycine, shinorine, and porphyra-334. Among colonies from 5-, 10-, 15-, and 20-m depths, the concentration of total MAAs was significantly high at 10 m and low at 20 m. Colonies at 10 m need to maintain low spicule densities to have enough photosynthetically active radiation (PAR) to maintain the photosymbionts, and they probably concentrate MAAs to block UV radiation without attenuating PAR. Because high levels of PAR cause photoinhibition of photosynthesis, spicules and pigment cells would be more effective for photoprotection in shallow water. Colonies of D. molle may adjust the light conditions for photosymbionts by combining MAAs, spicules, and pigment cells in varying amounts.


Assuntos
Aminoácidos/efeitos da radiação , Prochloron/fisiologia , Simbiose/fisiologia , Raios Ultravioleta , Urocordados/microbiologia , Animais , Microscopia Ultravioleta , Oceanos e Mares , Fotossíntese , Pigmentação , Urocordados/anatomia & histologia , Urocordados/fisiologia
9.
Mol Phylogenet Evol ; 40(1): 8-19, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16531073

RESUMO

In the tropics, certain didemnid ascidians harbor the prokaryotic photosymbiont Prochloron. To date, this photosymbiosis has been found in four didemnid genera that include non-symbiotic species. Here, we report the molecular phylogeny of symbiotic and non-symbiotic didemnids based on their 18S rDNA sequences. The data cover all four genera containing symbiotic species and one other genus comprised of only non-symbiotic species. Near-complete nucleotide sequences of 18S rDNAs were determined for four non-didemnid species and 52 didemnid samples (five genera), including 48 photosymbiotic samples collected from the Ryukyu Archipelago, the Great Barrier Reef, Hawaii, and Bali. Our phylogenetic trees indicated a monophyletic origin of the family Didemnidae, as well as each of the didemnid genera. The results strongly support the hypothesis that establishment of the ascidian-Prochloron symbiosis occurred independently in the Didemnidae lineage at least once in each of the genera that possess symbiotic species.


Assuntos
Filogenia , Prochloron/fisiologia , RNA Ribossômico 18S/genética , Simbiose/genética , Urocordados/genética , Urocordados/fisiologia , Animais , Sequência de Bases , Humanos , Dados de Sequência Molecular , Fotobiologia , Homologia de Sequência , Homologia de Sequência do Ácido Nucleico
10.
Biol Bull ; 204(2): 109-13, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12700141

RESUMO

Coral reef invertebrates that host phototrophic symbionts are thought to protect themselves and their symbionts with mycosporine-like amino acids (MAAs)-UV-absorbing substances that act as sunscreens (Dunlap, W. C., and J. M. Shick, 1998. J. Phycol. 34: 418-430). However, the histological distribution of MAAs in the host tissues has not yet been visualized. We have localized the UV-absorbing substances in the tissues of two colonial didemnid ascidians-Lissoclinum patella and Diplosoma sp.-that contain the symbiotic photo-oxygenic prokaryote Prochloron sp. Cross-sections of unfixed tissue from these ascidians were examined by UV-light microscopy at 320 or 330 nm, wavelengths at which UV light is absorbed by MAAs. Within the tunic, the gelatinous integument of the colony, UV light was exclusively absorbed by a particular type of cell, the tunic bladder cell. Tunic bladder cells with strong UV absorption were denser in the upper tunic, which lies over a colony's zooids, than in the basal tunic underlying the zooid. In the upper tunic, those cells with strong UV absorption were most dense near the surface. The tunic bladder cell is highly vacuolated, and the vacuole contains strong acid, which destabilizes MAAs. Furthermore, the UV-absorbing portion of tunic bladder cells seemed to be cup-shaped, indicating that the MAAs are not localized in the vacuole, but in the cytoplasm. These results strongly suggest that didemnid ascidians accumulate MAAs in tunic bladder cells as a protection against UV radiation.


Assuntos
Aminoácidos/efeitos da radiação , Prochloron/fisiologia , Simbiose/fisiologia , Raios Ultravioleta , Urocordados/microbiologia , Aminoácidos/isolamento & purificação , Animais , Microscopia Ultravioleta , Oceanos e Mares , Urocordados/anatomia & histologia
11.
Nature ; 413(6856): 590, 2001 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-11595938

RESUMO

The oceanic picoplankton Prochlorococcus - probably the most abundant photosynthetic organism on our planet - can grow at great depths where light intensity is very low. We have found that the chlorophyll-binding proteins in a deep-living strain of this oxyphotobacterium form a ring around a trimer of the photosystem I (PS I) photosynthetic reaction centre, a clever arrangement that maximizes the capture of light energy in such dim conditions.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Proteínas de Bactérias/fisiologia , Cianobactérias/fisiologia , Complexos de Proteínas Captadores de Luz , Fotossíntese , Complexo de Proteína do Fotossistema I , Prochloron/química , Prochloron/fisiologia , Prochlorothrix/química , Prochlorothrix/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...